Что такое log в математике

Что такое log в математике

Определение логарифма

Логарифм — это математическая функция, основанная на свойствах возведения в степень.

Значение логарифма соответствует показателю степени данной базы, равному положительному числу “b” в базе “a”, что также должна быть положительной и отличаться от 1.

Чтобы лучше понять концепцию логарифма, необходимо посмотреть на формулу логарифмического уравнения:

“a” = основание, которое должно быть больше нуля (a > 0) и отличаться от единицы (a ≠ 1).

“b” = логарифмируемое число, где b должно быть больше нуля (b > 0).

В этом уравнении мы хотим найти, в какую степень (х) нужно возвести a, чтобы получилось b, т. е. aˣ = b.

, потому что

Формулы и свойства логарифмов

Некоторые из основных правил логарифма:

    Когда логарифмируемое число равно основанию логарифма, логарифм всегда будет равен 1 ;

Логарифм с любым основанием, число которого равно 1, всегда будет иметь результат равным 0 ;

Два логарифма с одинаковым основанием всегда будут иметь одинаковые числа ;

Если основание "а" возведено в степень логарифма с основанием "а" числа "b", то он равен "b" ;

В случае умножения чисел мы можем превратить их в сумму двух логарифмов с одинаковыми основаниями ;

А в случае деления чисел мы превращаем их в вычитание двух логарифмов с одинаковыми основаниями ;

Правило возведения в степень: логарифм в степени упрощается путём умножения степени на логарифм, сохраняя её основание и число (тоже самое делается с логарифмом в квадрате)

Формулы перехода к новому основанию:

Решение логарифмов — примеры

Пример 1

Пример 2

ОДЗ логарифма

Как определить Область Допустимых Значений логарифма:

Для определения ОДЗ логарифма мы обращаем внимание только на то, что стоит в скобках, и указываем, что вся эта часть больше ноля.

График логарифмической функции

Примерно таким образом может выглядеть график логарифмической функции (одна из линий на рисунке):

Свойства логарифмической функции :

  • E (y) = R, множество значений — все действительные числа;
  • область определения — множество всех положительных чисел D(y): (0;+∞);
  • её график всегда проходит через точку (1;0);
  • она не считается ни чётной, ни нечётной;
  • у неё нет ни наибольшего, ни наименьшего значений;
  • она не ограничена ни сверху, ни снизу;
  • если 0 функция убывает, а если a>1 => функция возрастает.
Читайте также:  Фотоаппарат nikon d40 отзывы

Логарифм Непера или натуральный логарифм

Состоит из логарифма, основанного на иррациональном числе, которое называется "число Эйлера", пишется как "e" и приблизительно равно 2,718281. Является обратной функцией к экспоненциальной функции.

Название логарифма ("логарифм Непера") произошло от имени его изобретателя — математика Джона Непера.

Десятичный логарифм

Это наиболее распространённая модель математических вычислений, особенно в так называемых логарифмических шкалах (или логарифмическом масштабе). Например: шкала pH, шкала Рихтера интенсивности землетрясений, шкала частоты звука — нотная шкала, и другие. И характеризуется тем, что основание (её логарифма) равно 10.

Десятичный логарифм может быть представлен без указания его основания.

История логарифма

Первоначально концепция логарифма была создана шотландским математиком Джоном Непером (1550–1617) в 17-м веке, с целью упрощения сложных тригонометрических расчётов.

Английский математик Генри Бриггс (1561–1630) также внёс свой вклад в исследования логарифма и считается одним из ответственных за улучшение десятичного логарифма и за создание его современной версии.

Этимологически слово "логарифм" образовано объединением двух греческих терминов: λόγος — "основание" и ἀριθμός — "число".

Логарифмом (от греческого λόγος — «слово», «отношение» и ἀριθμός — «число») числа b по основанию a ( logα b) называется такое число c, и b=a c , то есть записи logα b=c и b=a c эквивалентны. Логарифм имеет смысл, если a > 0, а ≠ 1, b > 0.

Говоря другими словами логарифм числа b по основанию а формулируется как показатель степени, в которую надо возвести число a, чтобы получить число b (логарифм существует только у положительных чисел).

Из данной формулировки вытекает, что вычисление x= logα b, равнозначно решению уравнения a x =b.

log2 8 = 3 потому, что 8=2 3 .

Выделим, что указанная формулировка логарифма дает возможность сразу определить значение логарифма, когда число под знаком логарифма выступает некоторой степенью основания. И в правду, формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с. Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа.

Читайте также:  Как сделать абзац в шапке инстаграм

Вычисление логарифма именуют логарифмированием. Логарифмирование — это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей трансформируется в суммы членов.

Потенцирование — это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов трансформируются в произведение сомножителей.

Достаточно часто используются вещественные логарифмы с основаниями 2 (двоичный), е число Эйлера e ≈ 2,718 (натуральный логарифм) и 10 (десятичный).

На данном этапе целесообразно рассмотреть образцы логарифмов log72, ln5, lg0.0001.

А записи lg(-3), log-33.2, log-1-4.3 не имеют смысла, так как в первой из них под знаком логарифма помещено отрицательное число, во второй – отрицательное число в основании, а в третьей – и отрицательное число под знаком логарифма и единица в основании.

Условия определения логарифма.

Стоит отдельно рассмотреть условия a > 0, a ≠ 1, b > 0.при которых дается определение логарифма. Рассмотрим, почему взяты эти ограничения. В это нам поможет равенство вида x = logα b , называемое основным логарифмическим тождеством, которое напрямую следует из данного выше определения логарифма.

Возьмем условие a≠1. Поскольку единица в любой степени равна единице, то равенство x=logα b может существовать лишь при b=1, но при этом log1 1 будет любым действительным числом. Для исключения этой неоднозначности и берется a≠1.

Докажем необходимость условия a>0. При a=0 по формулировке логарифма может существовать только при b=0. И соответственно тогда log может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Исключить эту неоднозначность дает условие a≠0. А при a 0.

И последнее условие b>0 вытекает из неравенства a>0, поскольку x=logα b, а значение степени с положительным основанием a всегда положительно.

Читайте также:  Как зайти в гугл плей с телефона

Особенности логарифмов.

Логарифмы характеризуются отличительными особенностями, которые обусловили их повсеместное употребление для значительного облегчения кропотливых расчетов. При переходе «в мир логарифмов» умножение трансформируется на значительно более легкое сложение, деление — на вычитание, а возведение в степень и извлечение корня трансформируются соответствующе в умножение и деление на показатель степени.

Формулировку логарифмов и таблицу их значений (для тригонометрических функций) впервые издал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, увеличенные и детализированные прочими учеными, широко использовались при выполнении научных и инженерных вычислений, и оставались актуальными пока не стали применяться электронные калькуляторы и компьютеры.

Логари́фм числа <displaystyle b>b по основанию <displaystyle a>a (от греч. λόγος — «слово», «отношение» и ἀριθμός — «число» [1]) определяется [2] как показатель степени, в которую надо возвести основание <displaystyle a>a, чтобы получить число <displaystyle b>b. Обозначение: <displaystyle log _b> log _b, произносится: «логарифм <displaystyle b>b по основанию <displaystyle a>a».

Вычисление логарифма называется логарифмированием. Числа <displaystyle a,b>a,b чаще всего вещественные, но существует также теория комплексных логарифмов [⇨].

Логарифмы обладают уникальными свойствами, которые определили их широкое использование для существенного упрощения трудоёмких вычислений [3]. При переходе «в мир логарифмов» умножение заменяется на значительно более простое сложение, деление — на вычитание, а возведение в степень и извлечение корня преобразуются соответственно в умножение и деление на показатель степени. Лаплас говорил, что изобретение логарифмов, «сократив труд астронома, удвоило его жизнь» [4].

Определение логарифмов и таблицу их значений (для тригонометрических функций) впервые опубликовал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, расширенные и уточнённые другими математиками, повсеместно использовались для научных и инженерных расчётов более трёх веков, пока не появились электронные калькуляторы и компьютеры.

Ссылка на основную публикацию
Что такое asus vibe
Файл asusvibe2.0.exe из ASUSTeK Computer Inc является частью AsusVibe2 0. asusvibe2.0.exe, расположенный в c:program files (x86)asusasusvibeasusvibe2.0.exe с размером файла 924336...
Что делать если виснет браузер
Автор Юрий Белоусов · 18.03.2019 Пользователи могут столкнуться с неприятной ситуацией, когда браузер Опера зависает, виснет, подвисает, тормозит, лагает, глючит....
Что делать если винда 10 не запускается
В нашей сегодняшней статье будет рассмотрен ряд случаев, связанных с отказом запуска операционной системы Windows 10 на компьютере или ноутбуке....
Что такое elm agent на андроид
Практически каждый пользователь мобильных устройств, рано или поздно, пытается разобраться в настройках, просматривать установленные приложения и сервисы. При просмотре списка...
Adblock detector