Симисторный регулятор мощности на микроконтроллере

Симисторный регулятор мощности на микроконтроллере

Достоинствами этой конструкции является: простота самостоятельного изготовления, дешевизна и лёгкая управляемость. Минусами можно считать то, что нормальная работа схемы происходит только только с нагрузками до 150-200 Ватт, при более мощной нагрузке возникает гул и генерируются радиопомехи.

При первом включении схеме на сегментном индикаторе горит цифра 0. Включение и отключение осуществляется одномоментным нажатием и удержанием двух кнопок-микропереключателей. Регулировка больше-меньше – каждым нажатием по отдельности. Если не нажимать ни на один из тумблеров, то после последнего нажатия через два часа регулятор отключится самостоятельно, индикатор до тех пор будет моргать на ступени последнего рабочего уровня потребляемой мощности.

В момент отключения устройства от сети запоминается последний уровень выдаваемой мощности, который будет автоматически задан при очередном включении. Регулировка осуществляется в диапазоне от 0 до 9 и далее от А до F. То есть всего имеется 16 ступеней регулировки.

Радиатор на фото выше достаточно большой, конструкция позволяет поставить вариант и по меньше, но другого у меня не было. При первом включении устройства у меня на дисплее моргал 0, на нажатие кнопок схема не реагировала. Заменив конденсатора по питанию на номинал 1000 мкФ,проблема исчезла.

Печатная плата в формате Sprint Layout и прошивка микроконтроллера размещены в одном архиве по ссылке выше.

Схема используется для плавного регулирования мощности в нагрузке. В основу способа управления положен метод фазового управления симистором. Сущность его заключается в пропуске части полупериода переменного сетевого напряжения. Ток поступающий в нагрузку пропорционален интегралу полученного сигнала. Основа конструкции микроконтроллер PIC16F1823.

Устройство поддерживает работу с активной (лампа накаливания, нагреватель) и индуктивной нагрузкой. Тактирование микроконтроллера осуществляется от внутреннего генератора. Сигнал синхронизации с сетью поступает с выпрямительного моста на вход внутреннего компаратора микроконтроллера через фильтр на R10, C5, R9, R8, C3. Опорное напряжение компаратора поступает с внутреннего ЦАП микроконтроллера и равно около 0,6 В, которое задается при конфигурации МК. Для устранения влияния емкости C6 на синхронизацию применяется диод D6. Индикация выполнена на E30561 с общим катодом.

Конструктивно устройство собрано на двух печатных платах. На одной распологаются индикатор и управляющие кнопки, а на другой МК, блок питания и симистор. Соединение плат выполнено проводом МГТФ.

С радиатором для симистора (HS-135-38), как на рисунке максимальная мощность нагрузки около 500 Вт. Соответственно под этот радиатор и сделано посадочное место на печатной плате.

Прошивка для МК выполнена в среде MPLAB на языке С для компилятора HI-TECH PICC 9.83. Скачать печатные платы, прошивку и проект MPLAB вы можете по ссылке выше.

Регулирование конструкции происходит с помощью симистора типа BT138. Управление которым осуществляется посредством МК. Цифровой LED дисплей показывает на сколько процентов в текущий момент времени открыт симистор. Логическая часть схемы получает питание от блок питания, основа которого стабилизатор напряжения DA1 7805.

Разделы сайта

DirectAdvert NEWS

Друзья сайта

Осциллографы

Мультиметры

Купить паяльник

Купить Микшер

Купить Караоке

Статистика

Регулятор мощности паяльника на PIC16F628A.

Power controller soldering iron PIC16F628A

Многие радиолюбители при конструировании различных электронных устройств пользуются обычными паяльниками, которые в отличии от паяльных станций, позволяющих регулировать температуру жала, постоянно работают на полную мощность, а это зачастую приводит к некачественной пайке и перегреву монтируемых элементов. В сети нам попалась схема не сложного регулятора, собранного на микроконтроллере PIC16F628A, ключевым элементом которого служит симистор BT136-600, принципиальная схема приведена на рисунке ниже:

Кроме управления симистором микроконтроллер выводит показание ступени мощности на семи-сегментный цифровой индикатор. Всего ступеней десять (от нуля до девяти), то есть при показании индикатора “9” энергопотребляющий прибор (паяльник, лампа накаливания) будет работать на 100% мощности. Переключение ступеней производится кратковременными нажатиями кнопок “+” и “-”.

Что хочу сказать об этом проекте — материал был взят с сайта RADIOKOT, в принципе, мне понравился, и именно поэтому я решил вылизать печатную плату, как говорится, на свой вкус. Хочу заметить, на сайте первоисточнике автор смонтировал регулятор в корпус какой то мыльницы, на мой взгляд вид у прибора получился не совсем презентабельный. На том же Алиэкспресс можно найти множество небольших пластиковых боксов вполне за приемлемые деньги. Ну да ладно, это эстетическая сторона вопроса, и каждый решает его по своему, кому то оказывается вполне достаточно, чтобы прибор просто работал. Ссылка на статью первоисточника, а так же ссылка на форум с обсуждением этого проекта с участием автора есть в архиве. Прежде чем решить собирать этот регулятор не поленитесь почитать форум, информации много, но она неоднозначна, радиолюбители высказывают свои мнения, у некоторых возникают сомнения в правильности схемотехники, но тем не менее у большинства регулятор работает, и выражают благодарность автору. Ну а мы идем дальше.

Читайте также:  Как обрезать картинку в powerpoint по контуру

Схема регулятора реализована на двух печатных платах, это плата управления с индикатором уровня мощности, и плата силовой части. Использован авторский вариант разводки элементов, она была совсем немного подкорректирована под свои нужды, это касается слоя шелкографии и макросов элементов. В слое шелкографии нанес надпись, указывающую на авторство, то есть NASTYA PRODUCTION. Плата управления и индикации в формате LAY6 выглядит так:

Регулятор мощности паяльника_Плата управления LAY6

Регулятор мощности паяльника_Плата управления LAY6 foto

Плата силовой части регулятора в формате LAY6:

Регулятор мощности паяльника_Силовая часть LAY6

Регулятор мощности паяльника_Силовая часть LAY6 FOTO

Список элементов схемы регулятора мощности:

• PIC16F628A – 1 шт. (Данный микроконтроллер имеет внутреннее тактирование, поэтому кварц впаивать в плату не нужно. При использовании МК без внутреннего тактирования, например, PIC16 F84A – впаяйте кварц на 4 МГц.) Прошивку МК найдете в архиве для скачивания.

• 100R / 0,5W – 1 шт.
• 47R / 0,5W – 1 шт.
• 100R / 0,25W – 8 шт.
• 1M / 0,25W – 1 шт.
• 5k1 / 0,25W – 2 шт.

• 1N4007 – 2 шт.
• Стабилитрон 5V6/100mA – 1 шт.
• Симистор BT136-600 – 1 шт. (С паяльниками 40-60 Ватт симистор справляется без теплоотвода, при использовании более мощной нагрузки можно прикрутить к нему небольшую алюминиевую пластину)

• 220nF/500V – 1 шт.
• 1mF/500V – 1 шт.
• 470mF/16V электролит – 1 шт.

• Предохранитель 2А + колодка под монтаж на плату – 1 шт.
• Катушка намотана на кольце 10х20х5 М2000, содержит 70. 100 витков провода диаметром 0,3 мм.
• При использовании микроконтроллера без внутреннего тактирования нужен кварц 4МГц.
• Кнопки без фиксации (плюс, минус) – 2 шт.
• Розетка для вилки паяльника – 1 шт.

В заключение немного поясню, на плате управления есть два джампера ОА и ОК, устанавливается один из них в зависимости какой цифровой индикатор вы применили, с общим анодом или с общим катодом. Если вы заранее знаете какой индикатор будете ставить, то при сборке платы можете сразу впаять перемычку в нужное место обычным медным проводом, а так же заранее сделайте нужную прошивку микроконтроллера, их в архиве две.

Принцип работы симисторных регуляторов мощности (напряжения) в цепях
переменного тока.

Что такое симистор, принцип его работы, а также справочные характеристики некоторых популярных приборов мы с Вами внимательно рассмотрели на странице &nbspСсылка на страницу.
Там же мы отметили, что симистор пришёл на смену рабочей лошадке-тиристору и практически полностью вытеснил его из электроцепей переменного тока.

Вспомним пройденный материал.
Отличительной чертой симистора является то, что при подаче на его управляющий электрод тока (напряжения), прибор переходит в проводящее состояние, замыкая нагрузку, причём проводит ток, независимо от полярности, приложенного к нагрузке напряжения.
Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью "анодного" напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой — в момент прохождения отрицательной).

Итак. Важным плюсом симисторных схем в электроцепях переменного тока является отсутствие выпрямительных устройств, и двухполюсность напряжения в нагрузке, что даёт возможность подключать их, помимо всего прочего, как трансформаторам, так и электродвигателям переменного тока.

Читайте также:  Как отследить человека через вайбер

Познакомимся с расхожими схемами симисторных регуляторов.

Для начала давайте рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности с фазово-импульсным управлением, позволяющего работать с нагрузками вплоть до 1200 Вт.

Рис.1

При замене симистора на другой, с большей величиной допустимого тока, мощность нагрузки можно увеличивать практически неограниченно.

А теперь — как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора — тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.1 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях и обмотках трансформаторов), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.1 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

Существуют и различные модификации приведённой выше простейшей схемы диммера.

Рис.2

Дополнительная цепочка R3 C2 (Рис.2 слева) призвана увеличить максимально достижимый фазовый сдвиг между сетевым напряжением и напряжением, поступающим на левый вывод динистора, что в свою очередь позволяет производить более глубокую регулировку мощности, подводимой к нагрузке.

На схеме, приведённой на Рис.2 справа, цепь, образованная диодами D1, D2 и резистором R1, обеспечивает плавность регулировки при минимальной выходной мощности. Без неё характеристика управления регулятором имеет гистерезис, что проявляется в скачкообразном повышении регулируемой мощности от нуля до 3. 5% от максимальной.
Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и, тем самым, устраняет эффект скачкообразного начального увеличения мощности в нагрузке.

Изредка можно встретить устройства, в которых регулировка мощности производится посредством отдельной схемы, которая формирует импульсы с регулируемой длительностью для управления симистором.
Такие диммеры обладают значительно лучшими характеристиками, чем представленные выше, однако обратной стороной медали является повышенная сложность устройств и необходимость наличия отдельного источника питания схемы. Исключения составляют устройства, выполненные на специализированных ИМС. Примером такой микросхемы является фазовый регулятор КР1182ПМ1.

Рис.3

Применение КР1182ПМ1 в регуляторах мощности (Рис.3) позволяет добиваться как хорошей повторяемости, так и широкого диапазона перестройки и высокой температурной стабильности.

А если уж мы решили заморачиваться созданием отдельной схемы формирования управляющих импульсов, то имеет смысл отказаться от фазово-импульсного метода управления, и обратиться в сторону регуляторов мощности, работающих по принципу пропускания через нагрузку определённого целого числа периодов сетевого напряжения в единицу времени.
При таком способе регулирования появляется возможность включения симистора вблизи точки пересечения сетевым переменным напряжением нулевого потенциала, вследствие чего радикально снижается уровень помех, вносимых в электросеть.
Освещение таким диммером не запитаешь ввиду заметного мерцания, а вот для беспомехового регулирования мощности электронагревательных приборов — самое то.

Данная схема (Рис.4) перекочевала со страницы https://www.radiokot.ru/circuit/power/converter/50/ и представляет собой модификацию регулятора мощности, описанного в журнале Радио, 2009, № 9, с. 40–41 «В.Молчанов Симисторный регулятор мощности». Вот, что пишет автор.

«Устройство предназначено для беспомехового регулирования мощности электронагревательных приборов, работающих от сети переменного тока 220 В.
Кроме снижения уровня коммутационных помех, в регуляторе реализован принцип пропускания в нагрузку целого числа периодов сетевого напряжения. При таком способе регулирования с высокой точностью обеспечивается отсутствие постоянной составляющей напряжения на нагрузке, вследствие чего дополнительно снижается уровень искажений, вносимых в электросеть. Это особенно важно в случае мощной нагрузки.
Максимальная мощность нагрузки, подключаемой к регулятору, составляет 1 кВт. Потребляемый регулятором ток от сети не превышает 4 мА (действующее значение), типовое потребление – 3,5 мА.

Читайте также:  Как в экселе сделать графики и диаграммы

На микросхеме DD1 и элементах R1, C1, VD1, VD2 выполнен синхронизированный с сетью генератор прямоугольных импульсов. Период импульсов, вырабатываемых генератором, составляет около 1,3 с. Резистор R1 регулирует скважность импульсов. Элементы DD1.1, DD1.2 и DD1.3, DD1.4 включены как два RS‑триггера, на входы которых (выводы 1 и 9 микросхемы) через делитель R7R6 поступает часть сетевого напряжения. Транзисторы VT1 и VT2 выполняют функцию мощного инвертора логических сигналов для управления симистором. Питание устройства осуществляется через параметрический стабилизатор, в котором задействованы балластный резистор R7, стабилитрон VD3 и сглаживающий конденсатор C3. Когда напряжение на верхнем по схеме сетевом выводе относительно нижнего отрицательное, стабилитрон VD3 пропускает ток в прямом направлении, когда положительное – ограничивает напряжение на выводах 1 и 9 микросхемы DD1 на уровне 10 В. Ток, проходящий через эти выводы и внутренние защитные диоды микросхемы, заряжает конденсатор C3 до напряжения около 9,2 В, которое служит для питания низковольтной части устройства. Использование защитных диодов микросхемы не приводит к её защёлкиванию, поскольку амплитудное значение тока через резистор R7 ограничено и составляет около 5 мА.

Во время проверки регулятора мощности удобно в качестве нагрузки подключить лампу накаливания (желательно на 100 Вт или более). Устройство обычно не нуждается в налаживании, но если оказалось, что симистор VS1 открывается ненадёжно (лампа в нагрузке не включается или мерцает), можно попробовать уменьшить сопротивление резистора R4 или подобрать экземпляр симистора с меньшим током открывания. Резистор R4 позволяет выставить мгновенное напряжение сети, при котором происходит открывание симистора. Это напряжение может быть рассчитано по формуле Uпор ≈ Uпит∙R7/(2∙R4), где Uпит ≈ 9,2 В – напряжение на конденсаторе C3, сопротивления резисторов R6 и R7 должны быть равны. Уменьшение сопротивления резистора R4 обеспечивает более надёжное открывание симистора, но увеличивает уровень создаваемых помех, поэтому делать его сопротивление менее 30 кОм нежелательно».

И конечно, было бы совсем неправильно не упомянуть о таком важном представителе симисторного семейства, как — оптосимистор.
Оптосимистор включается посредством освещения полупроводникового слоя и представляет собой комбинацию оптоизлучателя и симистора в одном корпусе. Преимущество — простая однополярная схема управления и гальваническая изоляция цепей управления от фаз сетевого напряжения.

Оптосимисторы могут коммутировать нагрузку как сами (Рис.5),


Рис.5

так и управлять более мощными симисторами (Рис.6).


Рис.6

За счёт полной гальванической развязки управляющих цепей оптосимистора, основное его предназначение — это управление мощностью нагрузки при помощи логических устройств или микроконтроллеров с собственными цепями питания.

Рис.7

В качестве примера на Рис.7 приведена схема регулятора мощности паяльника.
Вот, как работу этой схемы описывает уважаемый Falconist на странице сайта http://forum.cxem.net .

«Оптосимистор серии МОС204х/306х/308х содержит внутри себя схему пересечения питающим напряжением нуля, т.е. открывается только в точке нулевого значения синусоидального сетевого напряжения, независимо от момента поступления управляющего напряжения на его светодиод. Тем самым обеспечивается ключевой режим подключения нагрузки, с практически полным отсутствием ВЧ помех, проникающих в сеть 220 В. Поэтому его замена на оптосимисторы МОС302х/305х, не имеющих такой схемы, крайне нежелательна, т.к. порочит сам принцип беспомехового регулирования.
Конденсатор С1 является балластным реактивным сопротивлением. Ток, который он пропускает совместно с подключенным параллельно ему резистором R1,приближенно составляет 16 мА. Данный ток используется для питания таймера DA1 и инфракрасного светодиода оптрона DA2».

Работа таймера, формирующего управляющий сигнал для оптотиристора, аналогична работе DD1 на Рис.4 и сводится к формированию импульсов с изменяемой скважностью.

Ссылка на основную публикацию
Секреты работы в word
Все секреты Word. MicrosoftWord – одна из наиболее часто используемых программ. Все мы пользуемся этим приложением, зачастую даже не зная...
С чем связана четвертая информационная революция ответ
Первая информационная революция связана с изобретением письменности, что привело к гигантскому качественному скачку: появилась возможность фиксировать знания на материальном носителе,...
Рынок бытовой техники в россии 2018
По данным исследования "INFOLine Retail Russia ТOP-100. Итоги 2017 года. Тенденции 2018 года. Прогноз до 2020 года", подготовленного специалистами INFOLine,...
Секс во время соревнований
Воздерживаться или не воздерживаться – вот в чем вопрос Джоэл Сидман, кандидат наук Вот что вам нужно знать… Влияние секса...
Adblock detector