Тема матрицы и действия над ними

Тема матрицы и действия над ними

Матрицей размерности называется прямоугольная таблица, состоящая изэлементов, расположенных вm строках и n столбцах.

Элементы матрицы (первый индексi − номер строки, второй индекс j − номер столбца) могут быть числами, функциями и т. п. Матрицы обозначают заглавными буквами латинского алфавита.

Матрица называется квадратной, если у нее число строк равно числу столбцов (m = n). В этом случае число n называется порядком матрицы, а сама матрица называется матрицей n-го порядка.

Элементы с одинаковыми индексами образуютглавную диагональ квадратной матрицы, а элементы (т.е. имеющие сумму индексов, равнуюn+1) − побочную диагональ.

Единичной матрицей называется квадратная матрица, все элементы главной диагонали которой равны 1, а остальные элементы равны 0. Она обозначается буквой Е.

Нулевая матрица − это матрица, все элементы которой равны 0. Нулевая матрица может быть любого размера.

К числу линейных операций над матрицами относятся:

1) сложение матриц;

2) умножение матриц на число.

Операция сложения матриц определена только для матриц одинаковой размерности.

Суммой двух матриц А и В называется матрица С, все элементы которой равны суммам соответствующих элементов матриц А и В:

.

Произведением матрицы А на число k называется матрица В, все элементы которой равны соответствующим элементам данной матрицы А, умноженным на число k:

.

Операция умножения матриц вводится для матриц, удовлетворяющих условию: число столбцов первой матрицы равно числу строк второй.

Произведением матрицы А размерности на матрицу В размерности называется матрицаС размерности , элементi-ой строки и j-го столбца которой равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-го столбца матрицы В:

.

Произведение матриц (в отличие от произведения действительных чисел) не подчиняется переместительному закону, т.е. в общем случае А В В А.

1.2. Определители. Свойства определителей

Понятие определителя вводится только для квадратных матриц.

Определителем матрицы 2-го порядка называется число, вычисляемое по следующему правилу

.

Определителем матрицы 3-го порядка называется число, вычисляемое по следующему правилу:

Первое из слагаемых со знаком «+» представляет собой произведение элементов, расположенных на главной диагонали матрицы (). Остальные два содержат элементы, расположенные в вершинах треугольников с основанием, параллельным главной диагонали (и). Со знаком «-» входят произведения элементов побочной диагонали () и элементов, образующих треугольники с основаниями, параллельными этой диагонали (и).

Это правило вычисления определителя 3-го порядка называется правилом треугольников (или правилом Саррюса).

Свойства определителей рассмотрим на примере определителей 3-го порядка.

1. При замене всех строк определителя на столбцы с теми же номерами, что и строки, определитель своего значения не меняет, т.е. строки и столбцы определителя равноправны

Читайте также:  Блок питания ip s350q2 0

.

2. При перестановке двух строк (столбцов) определитель меняет свой знак.

3. Если все элементы некоторой строки (столбца) нули, то определитель равен 0.

4. Общий множитель всех элементов строки (столбца) можно вынести за знак определителя.

5. Определитель, содержащий две одинаковые строки (столбца), равен 0.

6. Определитель, содержащий две пропорциональные строки (столбца), равен нулю.

7. Если каждый элемент некоторого столбца (строки) определителя представляет сумму двух слагаемых, то определитель равен сумме двух определителей, в одном из которых в том же столбце (строке) стоят первые слагаемые, а в другом − вторые. Остальные элементы у обоих определителей одинаковые. Так,

.

8. Определитель не изменится, если к элементам какого-либо его столбца (строки) прибавить соответствующие элементы другого столбца (строки), умноженные на одно и то же число.

Следующее свойство определителя связано с понятиями минора и алгебраического дополнения.

Минором элемента определителя называется определитель, полученный из данного вычеркиванием той строки и того столбца, на пересечении которых этот элемент расположен.

Например, минором элемента определителя называется определитель .

Алгебраическим дополнением элементаопределителя называется его минор, умноженный на, гдеi − номер строки, j − номер столбца, на пересечении которых находится элемент . Алгебраическое дополнение обычно обозначается. Для элементаопределителя 3-го порядка алгебраическое дополнение

9. Определитель равен сумме произведений элементов какой-либо строки (столбца) на соответствующие им алгебраические дополнения.

Например, определитель можно разложить по элементам первой строки

,

или второго столбца

.

Свойства определителей применяются для их вычисления.

Тема 1.6. Матрицы и действия над ними.

Рассмотрим матрицу вида:

Можно пользоваться сокращенной формой записи:

О. Нулевой матрицей называется матрица все элементы которой равны 0.

О. Две матрицы одинаковой размерности mxn называются равными, если на пересечении i-й строки и j-го столбца в одной и в другой матрице стоит одно и то же число; i=1, 2, . m ; j=1, 2, . n .

Пусть A = (aij) – некоторая матрица и g–произвольное число,тогда g A = (g aij), то есть при умножении матрицы A на число g все числа, составляющие матрицу A, умножаются на число g.

Пусть A и B – матрицы одинаковой размерности A = (aij), B = (bij), тогда их сумма A + B – матрица C = (cij) той же размерности, опреде­ляемая из формулы cij = aij + bij, то есть при сложении двух матриц попарно складываются одинаково расположенные в них числа.

Читайте также:  Где в москве обменять дирхамы на рубли

Матрицу A можно умножить на матрицу B, то есть найти матрицу C = AB, если число столбцов n матрицы A равно числу строк матрицы B, при этом матрица C будет иметь столько строк, сколько строк у матрицы A и столько столбцов, сколько столбцов у матрицы B. Каждый элемент матрицы C определяется формулой

Элемент cij матрицы-произведения C равен сумме произведений элементов i -строки первой матрицы- сомножителя на соответствующие элементы j -го столбца второй матрицы — сомножителя.

Таким образом, формула (1.16) является записью системы m линейных уравнений с n неизвестными в матричной форме. Ниже будет показано, что, записывая систему в сжатом виде, кроме краткости написания мы получаем и другие очень важные преимущества.

Пусть имеются две квадратные матрицы А и В одинаковой размерности.

Требуется найти матрицу X, удовлетворяющую матричному уравнению

AX = В.

О. Обратной матрицей к матрице A называется такая матрица A –1 , для которой справедливы равенства:

AA –1 = A –1 A = E (1.17)

Очевидно, что A –1 – квадратная матрица того же размера, что и матрица A. Сразу заметим, что не всякая квадратная матрица имеет обратную матрицу. Матрица А имеет обратную матрицу, если detA не равно 0.

Нет времени писать другую работу ?

Доверь это кандидату наук!

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого — определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A, матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n, где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать, умножать на число, умножать между собой, транспонировать. Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы. Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Читайте также:  Сколько байт занимает int

Вычитание выполняется по аналогии, только с противоположным знаком.

Умножение матрицы на число

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы — A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго. Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот — столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис. Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.

Ссылка на основную публикацию
Тарифы мтс смарт 400 руб
С того момента как тариф «Смарт» стал доступен для активации, он претерпел множество изменений. Они касаются размера абонентской платы, количества...
Сталкер зов припяти лучшее оружие в игре
S.T.A.L.K.E.R.: Call of Pripyat 4,260 уникальных посетителей 105 добавили в избранное "Уникальная модель пистолета СИП-т М200. Была выпущена малой партией...
Сталкер зов припяти много оружия
Для Всех любителей отличного отечественного шутера S.T.A.L.K.E.R.Зов Припяти представлен новый Оружейный мод Автоматы Штурмовые винтовки:1. АК-472. АКS-47 тактический3. АК-113 "Монгол"4....
Тарифы ростелекома на домашний интернет
Полный список актуальных тарифов Ростелеком для города Москва. Подключай тарифы Rostelecom в Москве бесплатно и пользуйся качественными услугами интернета и...
Adblock detector