Термистор в блоке питания компьютера где находится

Термистор в блоке питания компьютера где находится

В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

Читайте также:  Iphone 7 32gb rfb

БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.

Если блок питания вашего компьютера вышел из строя, не спешите расстраиваться, как показывает практика, в большинстве случаев ремонт может быть выполнен своими силами. Прежде чем перейти непосредственно к методике, рассмотрим структурную схему БП и приведем перечень возможных неисправностей, это существенно упростит задачу.

Структурная схема

На рисунке показано изображение структурной схемы типичной для импульсных БП системных блоков.

Устройство импульсного БП ATX

Указанные обозначения:

  • А – блок сетевого фильтра;
  • В – выпрямитель низкочастотного типа со сглаживающим фильтром;
  • С – каскад вспомогательного преобразователя;
  • D – выпрямитель;
  • E – блок управления;
  • F – ШИМ-контроллер;
  • G – каскад основного преобразователя;
  • H – выпрямитель высокочастотного типа, снабженный сглаживающим фильтром;
  • J – система охлаждения БП (вентилятор);
  • L – блок контроля выходных напряжений;
  • К – защита от перегрузки.
  • +5_SB – дежурный режим питания;
  • P.G. – информационный сигнал, иногда обозначается как PWR_OK (необходим для старта материнской платы);
  • PS_On – сигнал управляющий запуском БП.

Распиновка основного коннектора БП

Для проведения ремонта нам также понадобится знать распиновку главного штекера БП (main power connector), она показана ниже.

Штекеры БП: А – старого образца (20pin), В – нового (24pin)

Для запуска блока питания необходимо провод зеленого цвета (PS_ON#) соединить с любым нулевым черного цвета. Сделать это можно при помощи обычной перемычки. Заметим, что у некоторых устройств цветовая маркировка может отличаться от стандартной, как правило, этим грешат неизвестные производители из поднебесной.

Нагрузка на БП

Необходимо предупредить, что включение импульсных БП без нагрузки существенно сокращает их срок службы и даже может стать причиной поломки. Поэтому мы рекомендуем собрать простой блок нагрузок, его схема показана на рисунке.

Схема блока нагрузки

Схему желательно собирать на резисторах марки ПЭВ-10, их номиналы: R1 – 10 Ом, R2 и R3 – 3,3 Ом, R4 и R5 – 1,2 Ом. Охлаждение для сопротивлений можно выполнить из алюминиевого швеллера.

Подключать в качестве нагрузки при диагностике материнскую плату или, как советуют некоторые «умельцы», HDD и СD привод нежелательно, поскольку неисправный БП может вывести их из строя.

Перечень возможных неисправностей

Перечислим наиболее распространенные неисправности, характерные для импульсных БП системных блоков:

  • перегорает сетевой предохранитель;
  • +5_SB (дежурное напряжение) отсутствует, а также больше или меньше допустимого;
  • напряжения на выходе блока питания (+12 В, +5 В, 3,3 В) не соответствуют норме или отсутствуют;
  • нет сигнала P.G. (PW_OK);
  • БП не включается дистанционно;
  • не вращается вентилятор охлаждения.

Методика проверки (инструкция)

После того, как блок питания снят с системного блока и разобран, в первую очередь, необходимо произвести осмотр на предмет обнаружения поврежденный элементов (потемнение, изменившийся цвет, нарушение целостности). Заметим, что в большинстве случаев замена сгоревшей детали не решит проблему, потребуется проверка обвязки.

Визуальный осмотр позволяет обнаружить «сгоревшие» радиоэлементы

Если таковы не обнаружены, переходим к следующему алгоритму действий:

  • проверяем предохранитель. Не стоит доверять визуальному осмотру, а лучше использовать мультиметр в режиме прозвонки. Причиной, по которой выгорел предохранитель, может быть пробой диодного моста, ключевого транзистора или неисправность блока, отвечающего за дежурный режим;

Установленный на плате предохранитель

  • проверка дискового термистора. Его сопротивление не должно превышать 10Ом, если он неисправен, ставить вместо него перемычку крайне не советуем. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста;

Дисковый термистор (обозначен красным)

  • тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ. При обнаружении неисправности следует подвергнуть проверке установленные на входе конденсаторы и ключевые транзисторы. Поступившее на них в результате пробоя моста переменное напряжение , с большой вероятностью, вывело эти радиодетали из строя;
Читайте также:  Иду осторожно заменить управлением

Выпрямительные диоды (обведены красным)

  • проверка входных конденсаторов электролитического типа начинается с осмотра. Геометрия корпуса этих деталей не должна быть нарушена. После этого измеряется емкость. Нормальным считается, если она не меньше заявленной, а расхождение между двумя конденсаторами в пределах 5%. Также проверке должны быть подвергнуты запаянные параллельно входным электролитам варисторы и выравнивающие сопротивления;

Входные электролиты (обозначены красным)

  • тестирование ключевых (силовых) транзисторов. При помощи мультиметра проверяем переходы база-эмиттер и база-коллектор (методика такая же, как при проверке диодов).

Показано размещение силовых транзисторов

Если найден неисправный транзистор, то прежде, чем впаивать новый, необходимо протестировать всю его обвязку, состоящую из диодов, низкоомных сопротивлений и электролитических конденсаторов. Последние рекомендуем поменять на новые, у которых большая емкость. Хороший результат дает шунтирование электролитов при помощи керамических конденсаторов 0,1 мкФ;

  • Проверка выходных диодных сборок (диоды шоттки) при помощи мультиметра, как показывает практика, наиболее характерная для них неисправность – КЗ;

Отмеченные на плате диодные сборки

  • проверка выходных конденсаторов электролитического типа. Как правило, их неисправность может быть обнаружена путем визуального осмотра. Она проявляется в виде изменения геометрии корпуса радиодетали, а также следов от протекания электролита.

Не редки случаи, когда внешне нормальный конденсатор при проверке оказывается негодным. Поэтому лучше их протестировать мультиметром, у которого есть функция измерения емкости, или использовать для этого специальный прибор.

Видео: правильный ремонт блока питания ATX.
https://www.youtube.com/watch?v=AAMU8R36qyE

Заметим, что нерабочие выходные конденсаторы – самая распространенная неисправность в компьютерных блоках питания. В 80% случаев после их замены работоспособность БП восстанавливается;

Конденсаторы с нарушенной геометрией корпуса

  • проводится измерение сопротивления между выходами и нулем, для +5, +12, -5 и -12 вольт этот показатель должен быть в пределах, от 100 до 250 Ом, а для +3,3 В в диапазоне 5-15 Ом.

Доработка БП

В заключение дадим несколько советов по доработке БП, что позволит сделать его работу более стабильной:

  • во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер);
  • диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;
  • выходные электролитические конденсаторы желательно поменять на новые с емкостью 2200-3300 мкФ и номинальным напряжением не менее 25 вольт;
  • бывает, что на канал +12 вольт вместо диодной сборки устанавливаются спаянные между собой диоды, их желательно заменить на диод шоттки MBR20100 или аналогичный;
  • если в обвязке ключевых транзисторов установлены емкости 1 мкФ, замените их на 4,7-10 мкФ, рассчитанные под напряжение 50 вольт.

Такая незначительная доработка позволит существенно продлить срок службы компьютерного блока питания.

Очень интересно прочитать:

Часто в различных источниках питания возникает задача ограничить стартовый бросок тока при включении. Причины могут быть разные – быстрый износ контактов реле или выключателей, сокращение срока службы конденсаторов фильтра итд. Такая задача недавно возникла и у меня. В компьютере я использую неплохой серверный блок питания, но за счет неудачной реализации секции дежурного режима, происходит сильный ее перегрев при отключении основного питания. Из-за этой проблемы уже 2 раза пришлось ремонтировать плату дежурного режима и менять часть электролитов, находящихся рядом с ней. Решение было простое – выключать блок питания из розетки. Но оно имело ряд минусов – при включении происходил сильный бросок тока через высоковольтный конденсатор, что могло вывести его из строя, кроме того, уже через 2 недели начала обгорать вилка питания блока. Решено было сделать ограничитель бросков тока. Параллельно с этой задачей, у меня была подобная задача и для мощных аудио усилителей. Проблемы в усилителях те же самые – обгорание контактов выключателя, бросок тока через диоды моста и электролиты фильтра. В интернете можно найти достаточно много схем ограничителей бросков тока. Но для конкретной задачи они могут иметь ряд недостатков – необходимость пересчета элементов схемы для нужного тока; для мощных потребителей – подбор силовых элементов, обеспечивающих необходимые параметры для расчетной выделяемой мощности. Кроме того, иногда нужно обеспечить минимальный стартовый ток для подключаемого устройства, из-за чего сложность такой схемы возрастает. Для решения этой задачи есть простое и надежное решение – термисторы.

Читайте также:  Сколько всего частей starcraft


Рис.1 Термистор

Термистор – это полупроводниковый резистор, сопротивление которого резко изменяется при нагреве. Для наших целей нужны термисторы с отрицательным температурным коэффициентом – NTC термисторы. При протекании тока через NTC термистор он нагревается и его сопротивление падает.


Рис.2 ТКС термистора

Нас интересуют следующие параметры термистора:

Сопротивление при 25˚С

Максимальный установившийся ток

Оба параметра есть в документации на конкретные термисторы. По первому параметру мы можем определить минимальный ток, который пройдет через сопротивление нагрузки при подключении ее через термистор. Второй параметр определяется максимальной рассеиваемой мощностью термистора и мощность нагрузки должна быть такой, что бы средний ток через термистор не превысил это значение. Для надежной работы термистора нужно брать значение этого тока меньшее на 20 процентов от параметра, указанного в документации. Казалось бы, что проще – подобрать нужный термистор и собрать устройство. Но нужно учитывать некоторые моменты:

  1. Термистор достаточно долго остывает. Если выключить устройство и сразу включить опять, то термистор будет иметь низкое сопротивление и не выполнит свою защитную функцию.
  2. Нельзя соединять термисторы параллельно для увеличения тока – из-за разброса параметров ток через них будет сильно различаться. Но вполне можно соединять нужное к-во термисторов последовательно.
  3. При работе происходит сильный нагрев термистора. Греются также элементы рядом с ним.
  4. Максимальный установившийся ток через термистор должен ограничиваться его максимальной мощностью. Этот параметр указан в документации. Но если термистор используется для ограничения коротких бросков тока (например, при первоначальном включении блока питания и зарядке конденсатора фильтра), то импульсный ток может быть больше. Тогда выбор термистора ограничен его максимальной импульсной мощностью.

Энергия заряженного конденсатора определяется формулой:

E = (C*Vpeak²)/2

где E – энергия в джоулях, C – емкость конденсатора фильтра, Vpeak – максимальное напряжение, до которого зарядится конденсатор фильтра (для наших сетей можно взять значение 250В*√2 = 353В).

Если в документации указана максимальная импульсная мощность, то исходя из этого параметра можно подобрать термистор. Но, как правило, этот параметр не указан. Тогда максимальную емкость, которую безопасно можно зарядить термистором, можно прикинуть по уже рассчитанным таблицам для термисторов стандартных серий.

Я взял таблицу с параметрами термисторов NTC фирмы Joyin. В таблице указаны:

Rном — номинальное сопротивление термистора при температуре 25°С

Iмакс — максимальный ток через термистор (максимальный установившийся ток)

Смакс — максимальная емкость в тестовой схеме, которую разряжают на термистор без его повреждения (тестовое напряжение 350v)

Как проводится тестовое испытание, можно посмотреть тут на седьмой странице.

Несколько слов о параметре Смакс – в документации показано, что в тестовой схеме конденсатор разряжается через термистор и ограничительный резистор, на котором выделяется дополнительная энергия. Поэтому максимальная безопасная емкость, которую сможет зарядить термистор без такого сопротивления, будет меньше. Я поискал информацию в зарубежных тематических форумах и посмотрел типовые схемы с ограничителями в виде термисторов, на которые приведены данные. Исходя из этой информации, можно взять коэффициент для Смакс в реальной схеме 0.65, на который умножить данные из таблицы.

Ссылка на основную публикацию
Тарифы мтс смарт 400 руб
С того момента как тариф «Смарт» стал доступен для активации, он претерпел множество изменений. Они касаются размера абонентской платы, количества...
Сталкер зов припяти лучшее оружие в игре
S.T.A.L.K.E.R.: Call of Pripyat 4,260 уникальных посетителей 105 добавили в избранное "Уникальная модель пистолета СИП-т М200. Была выпущена малой партией...
Сталкер зов припяти много оружия
Для Всех любителей отличного отечественного шутера S.T.A.L.K.E.R.Зов Припяти представлен новый Оружейный мод Автоматы Штурмовые винтовки:1. АК-472. АКS-47 тактический3. АК-113 "Монгол"4....
Тарифы ростелекома на домашний интернет
Полный список актуальных тарифов Ростелеком для города Москва. Подключай тарифы Rostelecom в Москве бесплатно и пользуйся качественными услугами интернета и...
Adblock detector