Задача числа фибоначчи python

Задача числа фибоначчи python

Ряд чисел Фибоначчи представляет собой последовательность. Первый и второй элементы последовательности равны единице. Каждый последующий элемент равен сумме двух предыдущих. Рассмотрим разные способы нахождения элементов по номеру и генерацию списка с помощью Python 3.

Введение

Расчет ряда чисел Фибонначчи – один из лучших примеров программ на Python, использующих рекурсию. Хотя наиболее частый пример, рекурсии – это расчет факториала.

Рассмотрим варианты получения ряда Фибоначчи на Python 3:

  • С помощью рекурсии.
  • Используя оператор цикла.

Также сгенерируем список чисел и создадим генератор с помощью которого можно поочередно получать числа.

Будем искать с помощью цикла for. В переменных prew и cur будут предыдущий элемент последовательности и текущий, их проинициализируем в 1. Если пользователь запросит первый или второй элемент, то мы так и не попадём внутрь тела цикла. И будет выведена единица из переменной cur .

Если же запросят 3-ий или какой либо последующий элемент последовательности Фибоначчи, то мы зайдем в цикл. Во временную переменную tmp сохраним следующее число последовательности. После этого заполним prew и cur новыми значениям. Когда пройдет нужное количество итераций, выведем значение cur в консоль.

В предыдущем коде нам пришлось воспользоваться переменной tmp . Но можно код внутри цикла переписать следующим образом:

Теперь вместо трех строк кода получилась одна строка! И пропала необходимость использования дополнительной переменной.

В этом примере мы использовали цикл for , но можно эту программу реализовать, немного изменив код, с помощью цикла while .

Рекурсия

В случае с рекурсией напишем функцию, аргументом которой будет требуемое число ряда Фибоначчи. Текущему значению последовательности cur вначале присвоим 1. После этого воспользуемся условным оператором языка Python – if . В нем проверим аргумент функции. Если он больше 2, то функция вызовет саму себя и вычислит предыдущее значение ряда, а так же то, которое было еще раньше и запишет в переменную cur их сумму.

Конечно, пример с рекурсией интересен. Но он будет работать гораздо медленнее.

А если вы решите вычислить, допустим 1000-ый элемент последовательности. Используя цикл, мы его очень быстро рассчитаем. А вот в случае с рекурсией получим ошибку превышения максимального количества рекурсий:

Генератор списка

Если мы захотим инициализировать список рядом Фибоначчи, то это можно сделать следующим образом:

Здесь fibonacci(10) это генератор объекта ряда размерностью 10. При каждом последующем вызове он будет с помощью yield возвращать очередной элемент. Мы создаём из него список. Затем выводим список в консоль с помощью функции print .

Если нам надо будет поочередно получать числа ряда, а не держать в памяти сразу весь список, то можно поступить следующим образом:

Читайте также:  Оператор билайн номер телефона бесплатно казань

Здесь мы создали с помощью Python 3 генератор чисел Фибоначчи. При помощи функции next мы получаем поочередно числа ряда.

Числа Фибоначчи – это ряд чисел, в котором каждое следующее число равно сумме двух предыдущих: 1, 1, 2, 3, 5, 8, 13, . . Иногда ряд начинают с нуля: 0, 1, 1, 2, 3, 5, . . В данном случае мы будем придерживаться первого варианта.

Формула:

Пример вычисления:

Вычисление n-го числа ряда Фибоначчи с помощью цикла while

  1. Присвоить переменным fib1 и fib2 значения двух первых элементов ряда, то есть присвоить переменным единицы.
  2. Запросить у пользователя номер элемента, значение которого он хочет получить. Присвоить номер переменной n .
  3. Выполнять следующие действия n — 2 раз, так как первые два элемента уже учтены:
  1. Сложить fib1 и fib2 , присвоив результат переменной для временного хранения данных, например, fib_sum .
  2. Переменной fib1 присвоить значение fib2 .
  3. Переменной fib2 присвоить значение fib_sum .
  • Вывести на экран значение fib2 .
  • Примечание. Если пользователь вводит 1 или 2, тело цикла ни разу не выполняется, на экран выводится исходное значение fib2 .

    Компактный вариант кода:

    Вывод чисел Фибоначчи циклом for

    В данном случае выводится не только значение искомого элемента ряда Фибоначчи, но и все числа до него включительно. Для этого вывод значения fib2 помещен в цикл.

    Рекурсивное вычисление n-го числа ряда Фибоначчи

    1. Если n = 1 или n = 2, вернуть в вызывающую ветку единицу, так как первый и второй элементы ряда Фибоначчи равны единице.
    2. Во всех остальных случаях вызвать эту же функцию с аргументами n — 1 и n — 2. Результат двух вызовов сложить и вернуть в вызывающую ветку программы.

    Допустим, n = 4. Тогда произойдет рекурсивный вызов fibonacci(3) и fibonacci(2). Второй вернет единицу, а первый приведет к еще двум вызовам функции: fibonacci(2) и fibonacci(1). Оба вызова вернут единицу, в сумме будет два. Таким образом, вызов fibonacci(3) возвращает число 2, которое суммируется с числом 1 от вызова fibonacci(2). Результат 3 возвращается в основную ветку программы. Четвертый элемент ряда Фибоначчи равен трем: 1 1 2 3.

    Введение

    Программистам числа Фибоначчи должны уже поднадоесть. Примеры их вычисления используются везде. Всё от того, что эти числа предоставляют простейший пример рекурсии. А ещё они являются хорошим примером динамического программирования. Но надо ли вычислять их так в реальном проекте? Не надо. Ни рекурсия, ни динамическое программирование не являются идеальными вариантами. И не замкнутая формула, использующая числа с плавающей запятой. Сейчас я расскажу, как правильно. Но сначала пройдёмся по всем известным вариантам решения.

    Код предназначен для Python 3, хотя должен идти и на Python 2.

    Для начала – напомню определение:

    Читайте также:  Топ рпг с открытым миром на pc

    Замкнутая формула

    Пропустим детали, но желающие могут ознакомиться с выводом формулы. Идея в том, чтобы предположить, что есть некий x, для которого Fn = x n , а затем найти x.

    Решаем квадратное уравнение:

    Откуда и растёт «золотое сечение» ϕ=(1+√5)/2. Подставив исходные значения и проделав ещё вычисления, мы получаем:

    что и используем для вычисления Fn.

    Хорошее:
    Быстро и просто для малых n
    Плохое:
    Требуются операции с плавающей запятой. Для больших n потребуется большая точность.
    Злое:
    Использование комплексных чисел для вычисления Fn красиво с математической точки зрения, но уродливо — с компьютерной.

    Рекурсия

    Самое очевидное решение, которое вы уже много раз видели – скорее всего, в качестве примера того, что такое рекурсия. Повторю его ещё раз, для полноты. В Python её можно записать в одну строку:

    Хорошее:
    Очень простая реализация, повторяющая математическое определение
    Плохое:
    Экспоненциальное время выполнения. Для больших n очень медленно
    Злое:
    Переполнение стека

    Запоминание

    У решения с рекурсией есть большая проблема: пересекающиеся вычисления. Когда вызывается fib(n), то подсчитываются fib(n-1) и fib(n-2). Но когда считается fib(n-1), она снова независимо подсчитает fib(n-2) – то есть, fib(n-2) подсчитается дважды. Если продолжить рассуждения, будет видно, что fib(n-3) будет подсчитана трижды, и т.д. Слишком много пересечений.

    Поэтому надо просто запоминать результаты, чтобы не подсчитывать их снова. Время и память у этого решения расходуются линейным образом. В решении я использую словарь, но можно было бы использовать и простой массив.

    (В Python это можно также сделать при помощи декоратора, functools.lru_cache.)

    Хорошее:
    Просто превратить рекурсию в решение с запоминанием. Превращает экспоненциальное время выполнение в линейное, для чего тратит больше памяти.
    Плохое:
    Тратит много памяти
    Злое:
    Возможно переполнение стека, как и у рекурсии

    Динамическое программирование

    После решения с запоминанием становится понятно, что нам нужны не все предыдущие результаты, а только два последних. Кроме этого, вместо того, чтобы начинать с fib(n) и идти назад, можно начать с fib(0) и идти вперёд. У следующего кода линейное время выполнение, а использование памяти – фиксированное. На практике скорость решения будет ещё выше, поскольку тут отсутствуют рекурсивные вызовы функций и связанная с этим работа. И код выглядит проще.

    Это решение часто приводится в качестве примера динамического программирования.

    Хорошее:
    Быстро работает для малых n, простой код
    Плохое:
    Всё ещё линейное время выполнения
    Злое:
    Да особо ничего.

    Матричная алгебра

    И, наконец, наименее освещаемое, но наиболее правильное решение, грамотно использующее как время, так и память. Его также можно расширить на любую гомогенную линейную последовательность. Идея в использовании матриц. Достаточно просто видеть, что

    А обобщение этого говорит о том, что

    Читайте также:  М видео отправь смс получи скидку

    Два значения для x, полученных нами ранее, из которых одно представляло собою золотое сечение, являются собственными значениями матрицы. Поэтому, ещё одним способом вывода замкнутой формулы является использование матричного уравнения и линейной алгебры.

    Так чем же полезна такая формулировка? Тем, что возведение в степень можно произвести за логарифмическое время. Это делается через возведения в квадрат. Суть в том, что

    где первое выражение используется для чётных A, второе для нечётных. Осталось только организовать перемножения матриц, и всё готово. Получается следующий код. Я организовал рекурсивную реализацию pow, поскольку её проще понять. Итеративную версию смотрите тут.

    Хорошее:
    Фиксированный объём памяти, логарифмическое время
    Плохое:
    Код посложнее
    Злое:
    Приходится работать с матрицами, хотя они не так уж и плохи

    Сравнение быстродействия

    Сравнивать стоит только вариант динамического программирования и матрицы. Если сравнивать их по количеству знаков в числе n, то получится, что матричное решение линейно, а решение с динамическим программированием – экспоненциально. Практический пример – вычисление fib(10 ** 6), числа, у которого будет больше двухсот тысяч знаков.

    n = 10 ** 6
    Вычисляем fib_matrix: у fib(n) всего 208988 цифр, расчёт занял 0.24993 секунд.
    Вычисляем fib_dynamic: у fib(n) всего 208988 цифр, расчёт занял 11.83377 секунд.

    Теоретические замечания

    Не напрямую касаясь приведённого выше кода, данное замечание всё-таки имеет определённый интерес. Рассмотрим следующий граф:

    Подсчитаем количество путей длины n от A до B. Например, для n = 1 у нас есть один путь, 1. Для n = 2 у нас опять есть один путь, 01. Для n = 3 у нас есть два пути, 001 и 101. Довольно просто можно показать, что количество путей длины n от А до В равно в точности Fn. Записав матрицу смежности для графа, мы получим такую же матрицу, которая была описана выше. Это известный результат из теории графов, что при заданной матрице смежности А, вхождения в А n — это количество путей длины n в графе (одна из задач, упоминавшихся в фильме «Умница Уилл Хантинг»).

    Почему на рёбрах стоят такие обозначения? Оказывается, что при рассмотрении бесконечной последовательности символов на бесконечной в обе стороны последовательности путей на графе, вы получите нечто под названием "подсдвиги конечного типа", представляющее собой тип системы символической динамики. Конкретно этот подсдвиг конечного типа известен, как «сдвиг золотого сечения», и задаётся набором «запрещённых слов» <11>. Иными словами, мы получим бесконечные в обе стороны двоичные последовательности и никакие пары из них не будут смежными. Топологическая энтропия этой динамической системы равна золотому сечению ϕ. Интересно, как это число периодически появляется в разных областях математики.

    Ссылка на основную публикацию
    Драйвер amd psp что это
    Скачать драйвера » Чипсеты » AMD » AMD PSP Device Драйвера для AMD PSP Device AMD Platform Security Processor -...
    Гугл ты моя лапочка
    В сети часто встречаются забавные поисковые запросы, значение которых с первого раза можно не понять. «Яндекс ты лапочка но Гугл...
    Гугл поиск по фотографии в интернете
    Чтобы использовать поиск по картинке и фото из Google и Yandex, введите URL-адрес в поле ввода ниже или загрузите изображение...
    Драйвер asus k52j windows 7
    Драйвера для Vista 32bit на ASUS K52JE ОC Дата Размер Скачать BIOS 211 211 скачать ASUS FancyStart Utility V1.0.8 скачать...
    Adblock detector